White Paper Submitted to SRC (“Computer Aided Design and Test (CADT) Solicitation”), June 2024
Fault-Tolerant Systolic Array-Based AI Accelerators
References
- A. Chaudhuri, J. Talukdar, F. Su and K. Chakrabarty, “Functional criticality analysis of structural faults in AI accelerators”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 41, pp. 5657–5670, December 2022.
- A. Chaudhuri, C.-Y. Chen and K. Chakrabarty, “Recent advances in testing techniques for AI hardware accelerators”, Foundations and Trends in Integrated Circuits and Systems, vol. 2, pp. 244–380, 2023.
- A. Chaudhuri, J. Talukdar, J. Jung, G.-J. Nam and and K. Chakrabarty, “Fault criticality assessment for AI accelerators using graph convolutional networks”, Proc. IEEE/ACM Design, Automation and Test in Europe (DATE) Conference, 2021.
- A. Chaudhuri, C.-Y. Chen, J. Talukdar, S. Madala, A. K. Dubey and K. Chakrabarty, “Efficient fault-criticality analysis for AI accelerators using a neural twin”, Proc. IEEE International Test Conference, 2021.
- A. Chaudhuri, C.-Y. Chen, J. Talukdar and K. Chakrabarty, “Functional test generation for AI accelerators using Bayesian optimization”, IEEE VLSI Test Symposium, 2023.
- Zhao, Yingnan, Ke Wang, and Ahmed Louri, “FSA: An efficient fault-tolerant systolic array-based DNN accelerator architecture”, IEEE International Conference on Computer Design (ICCD), pp. 545-552. 2022.
- Lee, Hayoung, Jihye Kim, Jongho Park, and Sungho Kang. “STRAIT: Self-test and Self-recovery for AI Accelerator”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 42, pp. 3092-3104, September 2023.